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Abstract: In this paper, we will introduce a beautiful horn torus model
by Puha and Däumler for the Riemann sphere in complex analysis attaching
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Introduction
In this paper we introduce a new horn torus model for the classical Rie-

mann sphere from the viewpoint of the division by zero. In the model, the
zero point and the point at infinity are attaching and surprisingly enough,
we can introduce analytical structure of conformality in the horn torus. This
model seems to be fundamental and important for us.
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In Section 1, we introduce the horn torus model with the Puha mapping
that gives one to one mapping from the extended complex plane onto a horn
torus through the stereographic projection mapping from the Riemann sphere
onto the extended complex plane and in Section 2, we state simple properties
of the Puha mapping.

In Section 3, we will introduce a conformal mapping from the extended
complex plane onto the horn torus by modifying the Puha mapping. This
introduction by Däumler is geometrical and delicate, and the mapping will
be very complicated. Therefore, we will give a complete confirmation for
his conformal mapping analytically in Section 5. In Section 4, we give the
elementary properties of the Däumler conformal mapping. In Section 5, we
will simply refer to the division by zero in connection with the horn torus
model.

1 Horn torus model
We will consider the three circles represented by
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By rotation on the space (ξ, η, ζ) on the (x, y) plane as in ξ = x, η = y around
ζ axis, we will consider the sphere with 1/2 radius as the Riemann sphere
and the horn torus made in the sphere.

The stereographic projection mapping from (x, y) plane to the Riemann
sphere is given by

ξ =
x

x2 + y2 + 1
,

η =
y

x2 + y2 + 1
,

and
ζ =

x2 + y2

x2 + y2 + 1
.
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Of course,
ξ2 + η2 = ζ(1− ζ),

and
x =

ξ

1− ζ
, y =

η

1− ζ
. (1.2)

The mapping from (x, y) plane to the horn torus is given by

ξ =
2x
√
x2 + y2

(x2 + y2 + 1)2
,

η =
2y
√

x2 + y2

(x2 + y2 + 1)2
,

and
ζ =

(x2 + y2 − 1)
√

x2 + y2

(x2 + y2 + 1)2
+

1

2
.

This Puha mapping has a simple and beautiful geometrical correspon-
dence. At first for the plane we consider the stereographic mapping to the
Riemann sphere and next, we consider the common point of the line con-
necting the point and the center (0,0,1/2) and the horn torus. This is the
desired point on the horn torus for the plane point.

Indeed, we denote tentatively a point with (ξ1, η1, ζ1) on the horn torus.
Then, we have, from the relation between a point (ξ, η, ζ) on the Riemann
sphere and the correspondent point (ξ1, η1, ζ1) on the horn torus

ξ1 = ξ
ζ1 − 1/2

ζ − 1/2
, η1 = η

ζ1 − 1/2

ζ − 1/2
.

We set √
ξ2 + η2 = t, ζ1 −

1

2
= n, ζ − 1

2
= m.

Then, since the point (ξ1, η1, ζ1) is on the horn torus, from the identity

n2 +

(
n
t

m
− 1

4

)2

=
1

16
,

we obtain the identity
n =

mt

2(m2 + t2)
.
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Therefore, we obtain

ξ1 =
ξ

2

√
ξ2 + η2

(ζ − 1/2)2 + ξ2 + η2
,

η1 =
η

2

√
ξ2 + η2

(ζ − 1/2)2 + ξ2 + η2

and
ζ1 =

1

2

(ζ − 1/2)
√
ξ2 + η2

(ζ − 1/2)2 + ξ2 + η2
+

1

2
.

Hence, in terms of (x, y), we have the desired results.

The inversion is given by

x = ξ

(
ξ2 + η2 +

(
ζ − 1

2

)2

− ζ +
1

2

)(−1/2)

(1.3)

and

y = η

(
ξ2 + η2 +

(
ζ − 1

2

)2

− ζ +
1

2

)(−1/2)

. (1.4)

For the properties of horn torus with physical applications, see [2].

2 Properties of horn torus model
At first, the model shows the strong symmetry of the domains {|z| < 1, z =
x + iy} and {|z| > 1} and they correspond to the lower part and the upper
part of the horn torus, respectively. The unit circle {|z| = 1} corresponds to
the circle

ξ2 + η2 =

(
1

2

)2

, ζ =
1

2

in one to one way. Of course, the origin and the point at infinity are the
same point and correspond to (0, 0, 1/2). Furthermore, the inversion relation

z ←→ 1

z
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with respect to the unit circle {|z| = 1} corresponds to the relation

(ξ, η, ζ)←→ (ξ, η, 1− ζ)

and similarly,
z ←→ −z

corresponds to the relation

(ξ, η, ζ)←→ (−ξ,−η, ζ)

and
z ←→ −1

z
corresponds to the relation

(ξ, η, ζ)←→ (−ξ,−η, 1− ζ)

(H.G.W. Begehr: 2018.6.18.19:02).
We can see directly the important negative properties that the mapping

is not isogonal (equiangular) and infinitely small circles do not correspond
to infinitely small circles, as in analytic functions.

We note that only zero and numbers a of the form |a| = 1 have the
property : |a|b = |a|, b ̸= 0. Here, note that we can also consider 0b = 0 ([4]).
The symmetry of the horn torus model agrees perfectly with this fact. Only
zero and numbers a of the form |a| = 1 correspond to points on the plane
described by equation ζ − 1/2 = 0. Only zero and numbers a of the form
|a| = 1 correspond to points whose tangent lines to the surface of the horn
torus are parallel to the axis ζ.

The horn torus should be considered as simply-connected ([2], 3585). We
should consider that the origin and the point at infinity (that is represented
by zero) is attached as one point on the R3 space. Certainly, a curve through
the origin and the point at infinity is mapped to a closed curve on the horn
torus and the closed curve can not be shrinked to a point, however, note that
the point (0, 0, 1/2) is a boundary point on the R3 space.

3 Conformal mapping from the plane to the
horn torus with a modified mapping

W. W. Däumler discovered a surprising conformal mapping from the ex-
tended complex plane to the horn torus model (2018.8.18):
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https://www.horntorus.com/manifolds/conformal.html
and
https://www.horntorus.com/manifolds/solution.html
Our situation is invariant by rotation around ζ axis, and so we shall

consider the problem on the ξ, ζ plane.
Let N(0, 0, 1) be the north pole. Let P ′(ξ, η, ζ) denote a point on the

Riemann sphere and let z = x+ iy be the common point with the line NP ′

and ζ = 0 plane (: z = x+ iy); that is P ′ is the stereographic projection map
of the point z = x+ iy onto the unit sphere.

Let M(1/4, 0, 1/2) be the center of the circle (1.1). Let P ′′ be the common
point of the line SP ′(S = S(0, 0, 1/2)) and the circle (1.1).

Let Q′ be (0, 0, ζ) that is the line Q′P ′ is parallel to the x axis. Let Q′′

and M ′′ be the common points with the ζ axis and ξ = 1/4 with the parallel
line to the x axis through the point P ′′, respectively.

Further, we set α = ∠OSP ′ = ∠P ′′IS = (1/2)∠P ′′MS (I := I(1/2,0,1/2)).
We set P for the point on the horn torus such that ϕ = ∠SMP and Q be
the point on the ζ axis such that the line QP is parallel to the x axis.

Then, we have:
P ′Q′ =

1

2
sinα,

P ′′M ′′ =
1

4
| cos(2α)|,

P ′′Q′′ =
1

4
(1− cos(2α)),

the length of latitude through P ′ is

2πP ′Q′ = π sinα,

and the length of latitude through P ′′

2πP ′′Q′′ =
π

2
(1− cos(2α)) = π sin2 α.

Similarly, we have
2πQP =

π

2
(1− cosϕ).

From the conformal mapping from the point P ′ to the point P , we have
the identity

dα : dϕ = sinα : 1− cosϕ;
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that is we have the differential equation

dα

sinα
=

dϕ

1− cosϕ
.

Note here that the radius of the circle (1.1) is half of the stereographic projec-
tion mapping circle (the Riemann sphere). We solve this differential equation
as, with an integral constant C

log | tan α

2
|= − cot

ϕ

2
+ C.

For this derivation of the differential equation, see the detail comments
in the site : conformal mapping sphere ↔ horn torus with beautiful
figures and many informations, by W. W. Däumler. In order to check his
idea, we will give a complete proof analytically, in Section 5. As we refer to
soon, W. W. Däumler considered various constants C, however, for the case
C = 0, the situation is specially good as we see by numerical experiments,
therefore, in this paper we will consider the case C = 0.

By solving for ϕ we have the result

ϕ = 2 cot−1(− log | tan(α/2) |) (3.1)

or
α = 2 tan−1(e(− cot(ϕ/2))). (3.2)

Next, note that
tan

α

2
= |z|

and
α = 2 tan−1 |z|. (3.3)

We thus have

ϕ = 2 cot−1(− log |z|) (3.4)
and the inverse is

|z| = e− cot(ϕ/2). (3.5)
We thus obtain the complicated conformal mapping for the z plane to

the horn torus by (3.4) and (3.2). The inverse conformal mapping for the
horn torus to the complex z plane is given by (3.1) and (3.5).
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For the integral constant C, Däumler considers the general constant C
and stated that:

I don’t recognize a big problem with constant C. What are the crucial
points? As I stated, all mappings from sphere to horn torus and inverse with
any real C are conformal, but only the mappings with C = 0 are bijective.
Respectively with

α = 2 tan−1(p · |z|)

and
|z| = tan(α/2)

p
,

all mappings from complex plane to sphere and inverse with real p > 0 are
conformal, but bijective only when p = 1, what is the normal Riemannian
stereographic projection. Main thing is to have at least one solution (C = 0)
in this topic, and we can keep other constants, C not equal 0 and p not equal
1, for special cases in different context.

For this very interesting topics, see his site.
We can represent the direct Däumler mapping from the z plane onto the

horn torus as follows (V. V. Puha: 2018.8.28.22:31): With (3.4)

ξ =
x · (1/2)(sin(ϕ/2))2√

x2 + y2
,

η =
y · (1/2)(sin(ϕ/2))2√

x2 + y2
,

and
ζ = −1

4
sinϕ+

1

2
.

Indeed, at first, we have

SP := L = 2 · 1
4
sin

ϕ

2
=

1

2
sin

ϕ

2
, (3.6)

√
ξ2 + η2 = L cos

(
π

2
− ϕ

2

)
= L sin

ϕ

2
,

and √
ξ2 + η2 =

1

2
sin2 ϕ

2
.
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From the simple relations

ξ =
x
√
ξ2 + η2√
x2 + y2

, η =
y
√

ξ2 + η2√
x2 + y2

, (3.7)

and
ζ = −L sin

(
π

2
− ϕ

2

)
+

1

2
,

we have the desired representations.
We will give the inversion formula of the Däumler mapping. From (3.7)

we have
x =

ξ
√
x2 + y2√
ξ2 + η2

, y =
η
√

x2 + y2√
ξ2 + η2

.

Hence, it is enough to represent
√

x2 + y2 in terms of ξ, η, ζ on the horn
torus. From (3.5), (3.6) and

L =

√
ξ2 + η2 +

(
ζ − 1

2

)2

,

we have the inversion formula from the horn torus to the x, y plane:

x =
ξ√

ξ2 + η2
exp±


√
ζ − (ξ2 + η2 + ζ2)√
ξ2 + η2 +

(
ζ − 1

2

)2
 (3.8)

and

y =
η√

ξ2 + η2
exp±


√
ζ − (ξ2 + η2 + ζ2)√
ξ2 + η2 +

(
ζ − 1

2

)2
 . (3.9)

.

4 Properties of the Däumler conformal map-
ping

The Däumler conformal mapping stated in Section 3 is very complicated,
however, has very beautiful properties. We will see its elementary properties.
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The circle |z| = r is mapped to the circle:

ξ2 + η2 =
1

4

{
sin

ϕ

2

}4

, ζ = −1

4
sinϕ+

1

2

with
ϕ

2
= cot−1(− log r).

In particular, note that the unit circle r = 1 is mapped to the circle

ξ2 + η2 =

(
1

2

)2

, ζ =
1

2
.

We have the relation
η

ξ
=

y

x
,

but for y = mx

ζ = −1

4
sin

{
2 cot−1

(
−1

2
(log x2 + log(1 +m2))

)}
.

Furthermore, the inversion relation

z ←→ 1

z

with respect to the unit circle {|z| = 1} corresponds to the relation

(ξ, η, ζ)←→ (ξ, η, 1− ζ)

and similarly,
z ←→ −z

corresponds to the relation

(ξ, η, ζ)←→ (−ξ,−η, ζ)

and
z ←→ −1

z

corresponds to the relation

(ξ, η, ζ)←→ (−ξ,−η, 1− ζ).
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Of course, the conformal mapping of Däumler is important, however,
its mapping is very involved and the difference with the Puha mapping in
Section 2 is just the shift on the circle of longitude and the Puha mapping
is very simple. Furthermore the Puha mapping is clear in the geometrical
correspondence. Therefore, we will be able to enjoy the Puha mapping for
the horn torus model.

5 Proof of conformal mapping
In order to confirm the conformality of the Däumler mapping and at the
same time, in order to see its analytical structure, we will examine it. In this
section, for simplicity we use L,N with L = log(x2+y2) and N = L/(4+L2).

First, we calculate the first order derivatives.

∂ξ

∂x
=

8y2 − 8x2L+ 2y2L2

(x2 + y2)3/2(4 + L2)2
,

∂ξ

∂y
=

∂η

∂x
=

−2xy(2 + L)2

(x2 + y2)3/2(4 + L2)2
,

∂η

∂y
=

2(4x2 − 4y2L+ x2L2)

(x2 + y2)3/2(4 + L2)2
,

∂ζ

∂x
=
−2x(−4 + L2)

(x2 + y2)(4 + L2)2

and
∂ζ

∂y
=
−2y(−4 + L2)

(x2 + y2)(4 + L2)2
.

Next, we wish to have the relation between

(dσ)2 = (dξ)2 + (dη)2 + (dζ)2

and
(ds)2 = (dx)2 + (dy)2.

From
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dξ =
2(−xydy(2 + L)2 + dx(4y2 − 4x2L+ y2L2))

(x2 + y2)3/2(4 + L2)2
,

dη =
2(−xydx(2 + L)2 + dy(4x2 − 4y2L+ x2L2))

(x2 + y2)3/2(4 + L2)2
,

and

dζ =
−2(xdx+ ydy)(−4 + L2)

(x2 + y2)(4 + L2)2
,

we obtain the beautiful identity

(dσ)2 =
4(ds)2

(x2 + y2)(4 + L2)2
. (5.1)

The next and final crucial point is the relation:

dx

ds
,
dy

ds

and
dξ

dσ
,
dη

dσ
,
dζ

dσ
.

This may be done directly by division by dσ in (5.1). Indeed, we have:

dξ

dσ
=

dx(y2 − 4x2N) + dy(−xy − 4xyN)

ds(x2 + y2)
, (5.2)

dη

dσ
=

dx(−xy − 4xyN) + dy(x2 − 4y2N))

ds(x2 + y2)
, (5.3)

and
dζ

dσ
=
−xdx(−4 + L2)− ydy(−4 + L2)

ds
√
x2 + y2(4 + L2)

. (5.4)

On a point P0(ξ0, η0, ζ0) on the horn torus we consider two smooth curves
passing the point

fj(ξ, η, ζ) = 0, j = 1, 2.

At the point P0, we denote the values of dξ
dσ
, dη
dσ
, dζ
dσ

by λj, µj, νj, respectively.
Then, for the angle Φ made by the curves at the point P0 we have
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cosΦ = λ1λ2 + µ1µ2 + ν1ν2. (5.5)
The corresponding relations on the x, y plane are as follows:
For the corresponding curves on the x, y plane

gj(x, y) = 0, j = 1, 2,

at the corresponding point Q0(x0, y0), we denote the values of dx
ds
, dy
ds

by αj, βj,
respectively. Then, for the angle ϕ of the curves at the point Q0(x0, y0) we
have

cosϕ = α1α2 + β1β2. (5.6)
We wish to prove that (5.5) = (5.6), by formal calculation.
Note that from (5.2), we have for (x, y) = (x0, y0), here, for simplicity we

shall use (x, y) at Q0

λj =
αj(y

2 − 4x2N) + βj(−xy − 4xyN)

x2 + y2
.

Similarly, from (5.3),

µj =
αj(−xy − 4xyN) + βj(x

2 − 4y2N)

x2 + y2
,

and from (5.4),

νj =
−xαj(−4 + L2)− yβj(−4 + L2)√

x2 + y2(4 + L2)
.

When we insert these in the right side of (5.5), we obtain the right side of
(5.6). In this section, for these formal calculations, we used MATHEMAT-
ICA.

6 Division by zero calculus
The division by zero with mysterious and long history was indeed trivial and
clear as

1

0
=

0

0
=

z

0
= tan

π

2
= 0
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in the sense of generalized fractions and by the division by zero
calculus by means of the Laurent expansion for analytic functions.
See the papers [3], [7] and [8].

For the fundamental function W = 1/z we did not consider any value at
the origin z = 0, because we did not consider the division by zero 1/0 in a
good way. Many and many people consider its value by the limiting like +∞
and −∞ or the point at infinity as∞. However, their basic idea comes from
continuity with the common sense or based on the basic idea of Aristotle.
However, as the division by zero we will consider its value of the function
W = 1/z as zero at z = 0. We will see that this new definition is valid
widely in mathematics and mathematical sciences, see ([5, 6]) for example.
Therefore, the division by zero will give great impacts to calculus, Euclidean
geometry, analytic geometry, complex analysis and the theory of differential
equations at an undergraduate level and furthermore to our basic ideas for
the space and universe.

For the extended complex plane, we consider its stereographic projection
mapping as the Riemann sphere and the point at infinity is realized as the
north pole in the Alexsandroff’s one point compactification. The Riemann
sphere model gives a beautiful and complete realization of the extended com-
plex plane through the stereographic projection mapping and the mapping
has beautiful properties like isogonal (equiangular) and circle to circle corre-
spondence (circle transformation). Therefore, the Riemann sphere is a very
classical concept [1].

Now, with the division by zero we have to admit the strong discontinuity
at the point at infinity, because the point at infinity is represented by zero.
In [6], a formal contradiction for the classical result 1/0 =∞ was given and
the strong discontinuity was shown in many and many examples. See [7] for
example. On this situation, the third author discovered the mapping of the
extended complex plane to a beautiful horn torus at (2018.6.4.7:22) and its
inverse at (2018.6.18.22:18).

Incidentally, independently of the division by zero, W. W. Däumler has
various special great ideas on horn torus as we see from his site:

Horn Torus & Physics (https://www.horntorus.com/) ’Geometry Of Ev-
erything’, intellectual game to reveal engrams of dimensional thinking and
proposal for a different approach to physical questions ...

In the horn torus model, we can find many division by zero properties.
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In (1.2), we see the division by zero

0 =
0

0

that shows the mapping from (0, 0, 1) to (0, 0).
In (1.3) and (1.4), we can see the same division by zero that shows the

mapping from (0, 0, 1/2) to (0, 0).
Using the correspondence

α = 0↔ ϕ = 0,

or
α = π/2↔ ϕ = π

or
α = π ↔ ϕ = 2π,

we have C = 0 in the general Däumler mapping. Note that tan(π/2) = 0,
cot(π/2) = 0 and log 0 = 0 ([4]).
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